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The problem

= High-resolution climate simulations are
expensive

= Can we use probabilistic ML methods
to emulate a hi-res, CPM simulator
using coarse (GCM) climate variables?

= Met Office UKCP Local and UKCP18

— Low resolution: Global Climate Model
(GCM) @ 60km

— High resolution: Convection-Permitting
Model (CPM) @ 2.2km (using 8.8km)

— Daily frequency

55°N

54°N

CPM simulation precip

53°N |4

52°N

51°N

50°N

55°N

54°N

53°N

52°N

51°N

50°N

ol
4.5°W 1.5°W 0° 1.5°E
GCM simulation precip

5

4.5°W 1.5°W 0° 1.5°E



Approach

 Training: coarsened CPM RS oo
variables - hi-res CPM

(multi-level)

precip

= Evaluating: coarsened
CPM variables or GCM
variables - hi-res CPM-
like precip

= Use variables which are
well-represented in
GCMs and cause rainfall




Score-Based Generative Modeling through
Stochastic Differential Equations

Song, Y. et al., 2021

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

35 SEA
score function

dx = [f(x,t) — ¢° (t)&x log p: (x)|| dt + g(t)dw

Reverse SDE (noise == _data)
Estimate with NN

sg(x,1)



Samples

Coarsened CPM - 8.8km CPM rainfall

Exam‘ple coarse Diffusion-cCPM
CPM cCPM Bilinear input Sample 1 Sample 2 U-Net-cCPM
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Distribution of precipitation

- Both coarsened CPM and GCM ;|
Inputs to emulator produce

samples with grid-box
distribution matching CPM N

Precip (mm/day)

p reCI pltatl on b.  CCPMBilinear ~ U-Net-cCPM  Diffusion-cCPM  Diffusion-GCM

s ': 2 DY %
= Little bias in mean or std dev i 1o 4 ;} éj;)r

across the domain

cCPM Bilinear U-Net-cCPM Diffusion-cCPM  Diffusion-GCM
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Dependence on input and uncertainty

CPM Diffusion

= Spread between samples a. Diffusion-cCPM b U-Net.cCPM c. Sread Exver
matches error in expected s - ] s P
Way g_% 20 - 2 ’_/’ /’/ -é 10 4 ,’.//

55 E

» There may be more §’§1o, 5 5-/
spread overall compared =, |§ i’ .
to deterministic U-Net, this 0 20 0 20 0 10

. CPM mean precip CPM mean precip RMSS (mm/day)

represents the stochastic fminay) (i)

component of rainfall well



Climate change signal
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= Captures shift in distribution

1077 4

from historic period (1981-2000)

Precip (mm/day)

through present (2021-2040) to
future (2061-2080)

= Captures some of the drier e
summers and wetter winters I
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Summary

Using SOTA diffusion model to emulate Met Office’s hi-res UK climate
model

— Reproduces realistic spatial structure and variability of rainfall

— Good match in distribution and well-calibrated stochastic component, even
using GCM-based inputs

— Captures most of the 215t century climate change signal in the CPM

Any guestions or suggestions?
henry.addison@bristol.ac.uk OE@

Or read the pre-print —».:.::-.'i@;“.l
|' |, l|l i I||I ®



mailto:henry.addison@bristol.ac.uk

Spatial structure

= RAPSD show emulator samp
contain similar amounts of

variability across the range ol .|

different spatial scales

PSD
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U-Net-cCPM
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Future work

= Multivariate predictions

= Generalize to (large ensembles of) other climate models, time periods,
locations

= More extreme Extremes: 1-in-100 years
= Sub-daily frequency and temporal sequences (video)
= Flood modelling applications
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